Aviation Weather – Air Traffic Management Integration Study

Final Report

3 October 2007

NAS Operations Subcommittee

Research, Engineering and Development Advisory Committee

Key Findings

- As much as two-thirds of the weather related delay is potentially avoidable
- A risk management approach with adaptive, incremental decision making, based on automatically translating weather forecasts into air traffic impacts, presents a major new opportunity for reducing weather related delays

Key Recommendations

A cross cutting research program, involving public and private sector air traffic management and aviation weather experts, is needed to exploit these key findings

Key Recommendations

- Identify and quantify avoidable delay
- Translate convective weather into ATC impacts
- Develop adaptive, integrated ATM procedures for incremental route planning
- Airspace Systems and ATM Decision Support Tools must be designed for Weather impacts, from the beginning

Summary

- Opportunities exist to reduce the weather related delay for both tactical 0-2 hours and strategic 2-10 hour planning horizons
- An integrated, cross disciplinary research program is needed for this to be successful

Backup Slides

Key Research Recommendations

 Weather Information must be translated into ATM Impacts

Case Studies of Avoidable Weather Delay*

Eastern United States Flights during convective activity

	7/16/05 Actual	7/16/05 Possible	7/27/05 Actual	7/27/05 Possible	7/27/06 Actual	7/27/06 Possible	
Ground Delay >15 min	31%	4%	25%	4%	42%	5%	
Air Delay** >15 min	9%	5%	10%	9%	3%	7%	
Total Delay (hours)	3997	69	5630	1840	6452	2236	
# flights	13,340		15,648		16,328		

^{*}Preliminary results

^{**} Includes reroute time

Weather Translation into ATM Impacts

Key Research Recommendations

 Weather Information must be translated into ATM Impacts

 Airspace Systems and ATM Decision Support Tools must be designed for Weather impacts, from the beginning.

NAS Airspace is unable to respond to weather impacts

- Highly-structured
- Rigid networks of routes
- Complex Coordination

Research is needed to create flexible airspace designs that can adapt to weather impacts

Most ATM Decision Support Tools are built on Fair Weather assumptions

Traffic Management Advisor helps
TMUs sequence arriving flights within seconds

With Thunderstorms, TMUs abandon TMA, impose miles-in-trail, and sequence arriving flights within 10-15 minute blocks

DSTs <u>must</u> be integrated with Weather when they are developed!

An early Weather/ATM Integration Success

Route Availability Planning Tool - RAPT

Key Research Recommendations

- Weather Information must be translated into ATM Impacts
- Airspace Systems and ATM Decision Support Tools must be designed for Weather impacts from the beginning
- Adaptive Decision Making must be developed to address uncertainty

Flying LGA to ORD in Weather

Incrementally define Route and Decision Points

As the flight progresses, Uncertainty is reduced

Adaptive Decision Making

Adaptive:

- Delay decisions until uncertainty is reduced
- Develop contingency plans and decision points
- <u>Identify flight-specific</u> decisions per phase of flight

Distributed:

- <u>Distribute</u> the decisions to lowest level possible

Example: Slot substitutions versus first-come-first serve